対数関数の最大値と最小値について

高校生用の質問にご利用ください。
フォーラムルール
新規投稿は質問のみとさせていただきます。
返信する
ゲスト

対数関数の最大値と最小値について

投稿記事 by ゲスト »

至急お願いします!対数関数の問題で
1≦x≦27のとき、関数y=(log3x)2−log3x2−3の最大値と最小値を求めよ。またそのときのxの値を求めよ
が分かりません!明日模試なので、解説よろしくお願いします…!!
ゲスト

Re: 対数関数の最大値と最小値について

投稿記事 by ゲスト »

log₃x=tとおけば、1≦x≦27ですから、0≦t≦3

平方完成して、y=t²-2t-3=(t-1)²-4

よって、yは

t=3のとき、すなわち、x=27のとき、最大値0、

t=1のとき、すなわち、x=3のとき、最小値-4

ご確認をお願いします
返信する